Rubriken

A
Alge­braische Kur­ven und Flä­chen
B
Kombinato­rische Geo­metrie
C
Topologie
D
Kine­matik und Mecha­nik
E
Differential­geometrie
I
Verhalten von Kurven, Flächen und Linienkongruenzen im Kleinen
II
Krümmungslinien, Asymptotenlinien, geodätische Linien, parabolische Kurve
III
Biegungstheorie
IV
Minimalflächen
V
Flächen konstanter Gaußscher oder mittlerer Krümmung
VI
Schraubenflächen, Schiebflächen, Kurven und Flächen konstanter Breite
XX
Anderes
F
Algebra
G
Analy­sis und Wahr­schein­lichkeits­rech­nung
H
Funk­tionen­theo­rie
J
Differential­gleichungen, Wellen­lehre
K
Geo­metri­sche Optik
L
Instru­mente und Ap­parate
M
Ge­schichte der Mathe­matik und Astro­nomie
Z
Anderes

Rotationsfläche mit Asymptotenlinien

Modell 385

Konstrukteur:Rubrik:
cand. math. Gottlieb HertingE II 4-15

Beschreibung

Rotationsfläche zum Studium des Verlaufs der Asymptotenkurven. Gips. Fläche, entstanden durch Umdrehung der Neilschen Parabel um eine Parallele zur Rückkehrtangenten.

Zum Schaukasten des Modells Kasten Nummer 11

Literatur

Schilling, Martin(Hrg.): Catalog mathematischer Modelle, Leipzig(Verlag von Martin Schilling) 1911, 7.Auflage, Nr.205. S. 140.

Separataband M1 im Mathematischen Institut S. 203.